AFS Local Protocol Enhancements

Andrew Deason
June 2022

OpenAFS Workshop 2022

OpenAFS work is generally all public (gerrit, github)

= Some fixes require protocol changes

Standardizing protocol changes is very slow
= Decades of compatibility

= . Some changes become site-local
= Often non-public
= Not advertised much
= Small, self-contained

DPF

Disposable Protocol Framework “DPF”

= Previous talk in 20191

= Problems:

= Wire speed too slow
= rxkad encryption too slow

= Existing solutions:
= TCP
= TLS
= AES
= Compression

= DPF: Don't alter Rx, just change the RPCs
= ‘Disposable’ protocols

1 https://workshop.openafs.org/afsbpw19/2019/schedule/faster-wan-volume-operations-with-
dpf/ 3

https://workshop.openafs.org/afsbpw19/2019/schedule/faster-wan-volume-operations-with-dpf/
https://workshop.openafs.org/afsbpw19/2019/schedule/faster-wan-volume-operations-with-dpf/

Disposable Protocol Framework “DPF”

= Plugin framework for data streams
» Self-registration, string/domain-based
= 1z4:eof :fcrypt:rx
= 1zd:eof:fcrypt:tcp
= 1z4:eof:tls:tcp
= Actual mech name:

net.sinenomine.crypt.tls12psk.des.PSK-AES128-CBC-SHA.openssl.client

= Mechs in production:
= TCP (libevent)
= TLS PSK (openssl)
= [z4

= OpenAFS integrations in production:
= volserver
= i.e., volume moves, releases, dumps, restores

Client—Fileserver UID/PID

Client—Fileserver UID/PID

Problem: Who is accessing vol.obsolete ?

= From fileserver auditlog:
= Authenticated user
= Client IP
= Time, FID, ...
» afs-client-accessd?

= For example: user: ——UnAuth--, host: 192.0.2.43

Who is that?
= On the client itself: strace, inotify, detailed audits
= What a hassle!

2https://github.com/open.'=1fs-contrib/:=\1’s-tools/tree/master/admin/ai’s-cIient-accessd

https://github.com/openafs-contrib/afs-tools/tree/master/admin/afs-client-accessd

Client—Fileserver UID/PID

= Solution: add process info to client requests
= Replace RPCs: FetchStatus, FetchData64, etc.
= Different parallel site-local Rx service

= Fileserver auditlog: process local unix uid, pid

= For example:
= UID: 33 (www-data)
= PID: 1098 (nginx)
= Process accounting, logs

Not for general use (off by default)

= Fixed afs_uint32 fields
= Maybe more in the future?

Rapid PAGs

Rapid PAGs

= Scenario: clients with many short-lived PAGs
= Example: Web CGI with per-request pagsh/kinit/aklog

= Every time you pagsh -c 'kinit && aklog && touch':
1. Client creates a new security context
2. Client creates a new connection to fileserver
3. Fileserver resolves groups via ptserver
4. Fileserver asks client for ID (via a separate RPC: WhoAreYou,
TellMeAboutYourself)

= Problem: That last one is a big performance hit
= Clients don't always respond quickly
= Fileserver throttles requests
® CallPreamble: Couldn't get client while handling request from host ...

B afs: Waiting for busy volume ...

Rapid PAGs

= Solution: Have client send ID in advance
= Security class? (rxgk, rxclear)
= Smaller workaround: issue a separate RPC (just once per conn)

= New RPC: PreloadClientInfo
= Site-local Rx service
= Same info as TellMeAboutYourself

= Covers vast majority of cases, but not 100%

Client delays effectively gone

Bulk RPCs

Bulk RPCs

= Fileserver RXAFS:
= FetchStatus for 1 file: fine
= FetchStatus for 20 files: slow (20x RTT)
s BulkStatus, InlineBulkStatus

= ubik: Write — WriteV

= What if we could say “run these 5 RPCs at once"?

Bulk RPCs

= “rxbulk” subsystem
= No changes to Rx
= Changes to rxgen
= New per-service RPC for the “bulk handler” (BulkCall)

= Strategy:
1. Client writes RPC opcodes and IN args
1.1 Write inargs
1.2 Write inargs,
2. Client receives all OUT args
2.1 Read outargs:
2.2 Read outargs,

» No ‘split’ RPCs

10

Bulk RPCs

Code Example
/* Sequential */

code = DISK Write(conn, &tid, ...);

code = DISK Write(conn, &tid, ...);

code = DISK_Commit(conn, &tid, ...);

/* Bulk */

code = rxbulk_init(&bulk, ...);

code = rxbulk DISK Write(bulk, &tid, ...);
code = rxbulk _DISK Write(bulk, &tid, ...);
code = rxbulk_ DISK_Commit (bulk, &tid, ...);
code = rxbulk_runall(bulk, rxconn, ...);

11

Bulk RPCs

= Downsides:
= Arbitrary “bulk handler” RPC
= No common args, context
= Client-side RPC stats are tricky, for example:
= Run 3 RPCs at once:
= 2 DISK_Writes take 1ms
= 1 DISK_Commit takes lsec
= Bulk call takes 1.002 sec
= Who gets what?

= Used in experimental KV branch3

3https://github.com/adeason/openaf's/tree/adeason/vldb4- %

12

https://github.com/adeason/openafs/tree/adeason/vldb4-kv

Postamble

Contact
adeason@dson.org
adeason@sinenomine.net

Slides
http://dson.org/talks

13

mailto:adeason@dson.org
mailto:adeason@sinenomine.net
http://dson.org/talks

	DPF
	Client\rightarrowFileserver UID/PID
	Rapid PAGs
	Bulk RPCs

