Next Gen Ubik and the VLDB
A Key-Value Store for Ubik

Andrew Deason
June 2021

OpenAFS Workshop 2021

= Brief general background (Ubik/VLDB)
= Problem background

= Bad solutions

= Good solution

= New commands for administrators

Background: Ubik

= Distributed database
= Consensus algorithm
= Data storage (ACID)

Arbitrary data, single file

For OpenAFS
= Volume Location (VLDB)
= Users/groups (PTDB)

= Old papers
= Quorum Completion
= Ubik — A Library for Managing Ubiquitous Data
= Ubik: Replicated Servers Made Easy

Text/database logos from https://www.libreoffice.org/

Photo courtesy of Bea Deason-Perez, a good girl 3

https://www.libreoffice.org/

Background: VLDB

= Database for Locating Volumes

= This stuff:

$ vos examine root.cell
root.cell 536870912 RW 5 K On-line
server.example.com /vicepa
RWrite 536870912 ROnly 536870913 Backup
MaxQuota 0 K
Creation Sun May 10 17:24:22 2020
Copy Sun May 10 17:24:22 2020
Backup Never
Last Access Mon Apr 26 02:39:14 2021
Last Update Mon Apr 26 02:39:14 2021
0 accesses in the past day (i.e., vnode references)

RWrite: 536870912 ROnly: 536870913

number of sites -> 2
server server.example.com partition /vicepa RW Site
server server.example.com partition /vicepa RO Site

Background: VLDB v4

= OpenAFS viserver's VLDB format, version 4
= Network byte order, struct nvlentry, ...

= v1db.DBO: VLDB4 inside the ubik .DBO format

/Vldb.DBO (version: 1623274456.1) b
VLDB4 Jpp—— _(nvilentry: root.afs)
(nvientry: roo;cell) (nvlentry: vol.foo)

& %

= Cells with millions of volumes
= Slow lookups
= Fixed hash table
= See "VLserver memory cache” from the 2019 workshop

= How many volumes can we have?

» Volume id: 232, or ~4 billion

= Ubik 32-bit file size; 2-sizeof(headers) _ 14 59 976

sizeof (nvlentry)

= What happens? gerrit 14180

= Limit in ubik and VLDB4 itself

https://workshop.openafs.org/afsbpw19/2019/schedule/vlserver-memory-cache/
https://gerrit.openafs.org/14180

Fixing VLDBv4

= So, change the 32-bit fields to 64-bits, right?
= Requires a full db conversion

= VLDB4 has many other problems:
= Fixed hash size
= Hash chains in values
= Little room for expansion
= Flat, fixed-size structs

= Let's fix everything!

VLDB5 (2019)

= Record-based, XDR, B+ trees

= https://lists.openafs.org/pipermail /openafs-devel /2019-
December/020616.html

[OpenAFS-devel] vidb version 5

Andrew Deason adeason@sinenomine.net.
Mon, 9 Dec 2019 16:41:18 -0600

« Next message: [OpenAFS-devel] vidb version 5
« Messages sorted by: [date | [thread | [subject | [author

I've recently been working on a redesign of the vidb on-disk fornat
(version 5, "VldbS"), together with some others at SNA. This is still in
the early stages, but T wanted to provide a rough description of what
I'm working with so far, to solicit feedback and give others a chance to
raise objections.

In this email, I'n just trying to stick to describing the more
interesting aspects of the new format; followup email will explain a
Little nore about the relevant motivations, and possible concerns I
have. But I'm not trying to provide a full spec for the format here;
this is just informally describing the design and various features

This is also not intended to cover other practical matters, like how the
Viserver will deal with db format upgrades/downgrades. This is just
about the new db format itself

Feedback is appreciated

Motivation

The inmediate motivation for this work is a cell that will probably
exceed the 32-bit file offset Linit in ubik in the not-too-distant
future. There are a few other things that also need to be changed to fix
that (ubik protocols, APIs), but the vidbd disk format itself also uses
32-bit offsets to refer to database entries inside hash chains, etc. The
naive way to fix that_means changing all of the relevant fields to
4-bits and doing a full database conversion

hard-coded limits on various structures (e.g. replication sites), and to
e e A e LA T R S 8

https://lists.openafs.org/pipermail/openafs-devel/2019-December/020616.html
https://lists.openafs.org/pipermail/openafs-devel/2019-December/020616.html

SQLite in Ubik

= Looking up values by name/id is “solved”
= Maybe not a custom database format?

= Idea: store a SQLite db (or other db) inside Ubik

4 vidb.DBO (version: 1623274456.1)
/SQLiteB D
VLDB-?2? (nvlentry: root.afs)

(nvlentry: root.cell) (nvlentry: vol.foo)
b)

SQLite in Ubik

= Hard to implement
= Many/most DBs don't have pluggable storage
= Somewhat possible with SQLite

= Awkward and unusual
= Good luck running sqlite tools

= Probably slow, no sqlite-level caching, mmap, etc

= Ties us to the sqlite3 format

10

Rethinking Ubik storage

= SQLite-in-Ubik vs Ubik-in-SQLite

= Sounds like a lot of work, but. ..

/vldb.DBO.squte3 h
ubik (version: 1623274456.1) h
VLDB-??? (nvientry: root.afs)
(nvientry: root.cell) (nvientry: vol.foo)
\S &

11

= ubik KV interface (for Key Value storage)

= No longer use read/write/seek
= ubik_Seek(), ubik_Read(), ubik_Write()
» ubik _KVGet(), ubik_KVPut (), ubik_KVDelete()
= New server-to-server RPCs

= Maps key blobs to value blobs

= NoSQL, but SQL dbs can be used
= Not: CREATE TABLE volumes (name VARCHAR(x), ...);
= More like: CREATE TABLE kv (key BLOB PRIMARY KEY,
value BLOB);

Restrictive, but we only ever store databases

12

= Skips udisk and uphys
= Faster
= Handles ACID, no .DBSYS1 / read-during-write
= Easier VLMH (or no VLMH)

= Known formats understood by other tools

= Reduces code duplication

Not tied to any db
= SQLite, LMDB, BerkeleyDB
= MariaDB, Oracle
= even custom formats

= Changes invisible to viserver / other sites

13

LMDB (Lightning Memory-Mapped Database)

= OpenLDAP’s replacement for BerkeleyDB

= Small, mmap-based

= Fast for reads (~millions ops/sec)

= A few quirky restrictions
= Virtual address space
= Key size
= Relies on underlying platform

= A good fit!

LMDB logo from https://github.com/LMDB 14

https://github.com/LMDB

Implemented Solution: vidb4-kv

= Stuff vidb4's pile of structs into ubik-kv

= Why?
= Easy first step
= 32-bit limit, speed, ACID

" vidb.DBO/ (oafarstoragecont) h
/vldb.DBOIdata.mdb h
" ubik-kv (“version: 16232743561) h
vidb4-kv (" nvientry:rootafs)
(nvientryirootcell) (___ nvientry:voldoo)
\S =

5

vidb4-kv

= Prototype complete

= https://github.com/adeason/openafs/tree/adeason /vidb4-kv
= viserver, v1db_check, upgrades

= Speed (informal benches)
= Solaris: 1k — 34k (VLMH) — 46k reads/sec
= Linux: 7k — 145k reads/sec
= Linux w/writes: 3k — 19k reads/sec
= Linux w/writes: 29 — 138 writes/sec
= Changes with threads, pos/neg ratio, read/write ratio, etc

= Downsides
= On-disk size: 283M — 1.2G (recovery)
= vos listvldb slightly slower (~80%)
= Change is scary

16

https://github.com/adeason/openafs/tree/adeason/vldb4-kv

Upgrades

= Old procedure
= Shutdown viserver
= Convert vldb
= Restart viserver

= New online procedure

$ vldb_upgrade -to vldb4-kv -online -backup-suffix .ORIG

Freezing VLDB... done (freezeid 4).

Converting /usr/afs/db/vldb.DBO (vldb4) -> /usr/afs/db/v1db.DB0O.CONV.1623364598 (vldb4-kv)
Converting fileserver entries... done.

Converting volumes... 100% (296139868 / 296139868), done.

Committing changes... done.

Installing /usr/afs/db/v1db.DBO.CONV.1623364598 to ubik... done.

Distributing new database... done.

Unfreezing VLDB... done.

Converted /usr/afs/db/vldb.DBO from vldb4 to vldb4-kv (1622076124.1 -> 1622076125.1)
Backup saved in /usr/afs/db/vldb.DBO.0RIG

17

New commands

$ openafs-ctl vldb-info
vldb database info:
type: kv
engine: lmdb (LMDB 0.9.29: (March 16, 2021))
version: 1622076123.1
size: 7999994

$ openafs-ctl vlidb-dump /tmp/vldb.DBO

Freezing database... done (freezeid 1, db 15895059050000000.3).
Dumping database... done.

Ending freeze... done.

Database dumped to /tmp/vldb.DBO, version 15895059050000000.3

$ openafs-ctl vldb-restore /tmp/fo00.DBO -no-backup

Freezing database... done (freezeid 7, db 16220761260000000.1).
Making copy of /tmp/foo.DBO... done.

Installing db /usr/afs/db/vldb.DBO.TMP... done.

Distributing db... done.

Ending freeze... done.

Restored ubik database from /tmp/foo.DBO

New commands

$ openafs-ctl vldb-freeze-run -rw -cmd ./do_restore.sh
[...]

$ cat do_restore.sh

#!/bin/sh

set -xe

don't dist db when restoring (yet)
openafs-ctl vldb-restore /path/to/new.vldb.DBO -backup-suffix .bak -dist skip

vos listvldb vol.important -noresolv -config /path/to/localconf > /path/to/vos.out
diff -u /path/to/vos.out /path/to/expected.out

vldb looks ok; dist new db to other sites
openafs-ctl vldb-freeze-dist

= Sets env vars ($0PENAFS_VL_FREEZE_VERSION, et al)

= Reverts installed db on failure

19

openafs-ctl

= New command suite

= Local “control” only, no network
= Like FSSYNC (dafssync-debug)
= Local-only for security, reliability

Stop relying on signals

= Not ubik-specific, more in the future

20

Postamble

Dev Branch
https://github.com/adeason /openafs/tree /adeason /vidb4-kv

Gerrits
Most recent: https://gerrit.openafs.org/14632

Slides
http://dson.org/talks

Contact
adeason@dson.org
adeason@sinenomine.net

21

https://github.com/adeason/openafs/tree/adeason/vldb4-kv
https://gerrit.openafs.org/14632
http://dson.org/talks

